Check out our papers on GoogleScholar or selected publications listed below.
RNA switch and regulatable gene therapy (#19-24)
24) Tran M, Park H, Nobles C, Karunadharma P, Pan L, Zhong G, Wang H, He W, Ou T, Crynen G, Sheptack K, Stiskin I, Mou H, Farzan M*. A more efficient CRISPR-Cas12a variant derived from Lachnospiraceae bacterium MA2020. Molecular Therapy Nucleic Acids. 2021. 24:40-53.
23) Tickner ZJ, Zhong G, Sheptack KR, Farzan M*. Selection of High-Affinity RNA Aptamers That Distinguish between Doxycycline and Tetracycline. Biochemistry. 2020 Sep 22;59(37):3473-3486.
22) Zhong G*, Wang H, He W, Li Y, Mou H, Tickner ZJ, Tran MH, Ou T, Yin Y, Diao H, Farzan M*. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nature Biotechnology. 2020. 38:169-175. *corresponding author
- Highlight: Science Translational Medicine. 2020. doi: 10.1126/scitranslmed.aba9016
by Giuseppe Ronzitti, Genethon & Université Paris-Saclay, France
21) Mou H, Zhong G*, Gardner MR, Wang H, Wang YW, Cheng D, Farzan M*. Conditional regulation of gene expression by ligand-induced occlusion of a microRNA target sequence. Molecular Therapy. 2018.26(5):1277-1286. *corresponding author
- Commentary: Molecular Therapy. 2018. doi: 10.1016/j.ymthe.2018.04.010.
by Dr. Jorg Hartig, University of Konstanz, Germany
20) Zhong G*, Wang H, Li Y, Tran M, Farzan M. Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells. Nature Chemical Biology. 2017.13(8):839-841. *corresponding author
19) Zhong G*, Wang H, Bailey CC, Gao G, Farzan M. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. eLife. 2016.5:e18858. *corresponding author
SARS-CoV-2 Spike-receptor interaction and broadly anti-CoV drug candidate (#10-18)
18) Lu M, Yao W, Li Y*, Ma D, Zhang Z, Wang H, Tang X, Wang Y, Li C, Cheng D, Lin H, Yin Y*, Zhao J*, Zhong G*. Broadly effective ACE2 decoy proteins protect mice from lethal SARS-CoV-2 infection. Microbiology Spectrum. 2023. e0110023. doi: 10.1128/spectrum.01100-23 *corresponding author
17) Yao W*, Li Y*, Ma D, Hou X, Wang H, Tang X, Cheng D, Zhang H, Du C, Pan H, Li C, Lin H, Wang Y*, Gao J*, Zhong G*. Evolution of SARS-CoV-2 Spikes shapes their binding affinities for animal ACE2 orthologs. Microbiology Spectrum. 2023. *corresponding author
16) Ren W, Zhang Y, Rao J, Wang Z, Lan J, Liu K, Zhang X, Hu X, Yang C, Zhong G, Zhang R, Wang X, Shan C, Ding Q*. Evolution of immune evasion and host range expansion by the SARS-CoV-2 B.1.1.529 (Omicron) variant. mBio. 2023. 14(2):e0041623.
15) Ren W, Ju X, Gong M, Lan J, Yu Y, Long Q, Zhang Y, Zhong J, Zhong G, Wang X, Huang A, Zhang R, Ding Q*. Characterization of SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta) and B.1.618 on cell entry, host range, and sensitivity to convalescent plasma and ACE2 decoy receptor. mBio. 2022.13(2):e0009922.
14) Zhang Z, Zeng E, Zhang L, Wang W, Jin Y, Sun J, Huang S, Yin W, Dai J, Zhuang Z, Chen Z, Sun J, Zhu A, Li F, Cao W, Li X, Shi Y, Gan M, Zhang S, Wei P, Yuan J, Huang J, Zhong N, Zhong G*, Zhao J*, Wang Y*, Shao W*, Zhao J*. Potent Prophylactic and Therapeutic Efficacy of Recombinant Human ACE2-Fc against SARS-CoV-2 Infection in Vivo. Cell Discovery. 2021. 7(1):65. doi: 10.1038/s41421-021-00302-0. *corresponding author
13) Yao W, Wang Y, Ma D, Tang X, Wang H, Li C, Lin H, Li Y*, Zhong G*. Circulating SARS-CoV-2 variants B.1.1.7, 501Y.V2, and P.1 have gained ability to utilize rat and mouse Ace2 and altered in vitro sensitivity to neutralizing antibodies and ACE2-Ig. bioRxiv. 2021. doi.org/10.1101/2021.01.27.428353 *corresponding author
12) Guo Y, He W, Mou H, Zhang L, Chang J, Peng S, Ojha A, Tavora R, Parcells M, Luo G, Li W, Zhong G, Choe H, Farzan M, Quinlan B*. An engineered receptor-binding domain improves the immunogenicity of multivalent SARS-CoV-2 vaccines. mBio. 2021. 12(3):e00930-21.
11) Ren W, Lan J, Ju X, Gong M, Long Q, Zhu Z, Yu Y, Wu J, Zhong J, Zhang R, Fan S, Zhong G, Huang A, Wang X*, Ding Q*. Mutation Y453F in the spike protein of SARS-CoV-2 enhances interaction with the mink ACE2 receptor for host adaption. PLoS Pathogen. 2021. 17(11):e1010053.
10) Li Y, Wang H, Tang X, Fang S, Ma D, Du C, Wang Y, Pan H, Yao W, Zhang R, Zou X, Zheng J, Xu L, Farzan M, Zhong G*. SARS-CoV-2 and three related coronaviruses utilize multiple ACE2 orthologs and are potently blocked by an improved ACE2-Ig. Journal of Virology. 2020. 94:e01283-20. *corresponding author
HBV entry mechanism and entry inhibitors (#6-9)
9) Li Y, Ruan H, Li Y, Sun G, Liu X, He W, Mao F, He M, Yan L, Zhong G, Yan H, Li W*, Zhang Z*. Potent and Specific Inhibition of NTCP-Mediated HBV/HDV Infection and Substrate Transporting by a Novel, Oral-Available Cyclosporine A Analogue. Journal of Medicinal Chemistry. 2021 64(1): 543-565.
8) Yan H, Peng B, He W, Zhong G, Qi Y, Ren B, Gao Z, Jing Z, Song M, Xu G, Sui J, Li W. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. Journal of Virology. 2013.87(14):7977-7991.
7) Zhong G, Yan H, Wang H, He W, Jing Z, Qi Y, Fu L, Gao Z, Huang Y, Xu G, Feng X, Sui J, Li W. Sodium taurocholate cotransporting polypeptide mediates woolly monkey hepatitis B virus infection of Tupaia hepatocytes. Journal of Virology. 2013.87(12):7176-7184.
6) Yan H*, Zhong G*, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife. 2012.1:e00049. *equal contribution.
Commentaries:
1. Gut. 2012. doi: 10.1136/gutjnl-2013-304594
by Dr. Christoph Seeger, Fox Chase Cancer Center, USA
2. eLife. 2012. doi: 10.7554/eLife.00301
by Dr. James Chen, UT Southwestern Medical Center, USA
3. Journal of Hepatology. 2012. doi: 10.1016/j.jhep.2013.01.036
by Dr. Thomas Baumert, French National Institute of Health and Medical Research, France
This study has led to the 2021 Baruch S. Blumberg Prize (the highest honor for hepatitis B research), and The Life Science Prize of 2022 Future Science Prize.
Other publications (#1-5)
5) Ou T, He W, Quinlan B, Guo Y, Karunadharma P, Park H, Davis-Gardner M, Tran M, Yin Y, Zhang X, Wang H, Zhong G, Farzan M*. Reprogramming of the heavy-chain CDR3 regions of a human antibody repertoire. Molecular Therapy. 2021. S1525-0016(21)00571-2.
4) Bailey CC, Zhong G, Huang IC, Farzan M. IFITM-Family Proteins: The Cell's First Line of Antiviral Defense. Annual Review of Virology. 2014.1:261-283.
3) Sun Y, Qi Y, Liu C, Gao W, Chen P, Fu L, Peng B, Wang H, Jing Z, Zhong G, Li W. Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus. Journal of Virology. 2014.88(1):237-248.
2) Wang J, Song W, Li Y, Chen W, Yang D, Zhong G, Zhou H, Ren C, Yu H, Ling H. Improved expression of secretory and trimeric proteins in mammalian cells via the introduction of a new trimer motif and a mutant of the tPA signal sequence. Applied Microbiology and Biotechnology. 2011.91(3):731-740.
1) Cheng D*, Zhong G*, Su J, Liu Y, Li Y, Wang J, Hattori T, Ling H, Zhang F. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin. Biochemical and Biophysical Research Communications. 2010.391(4):1780-1784. *equal contribution