Buscar Close Search
Buscar Close Search
Page Menu

Biochemistry & Molecular Biotechnology Courses

  • Preparation for Qualifying Exam | BBS 602

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    This course will help prospective scientists in the biological and medical sciences communicate their work effectively, in writing, graphics, and oral presentations. The course teaches how to prepare a research paper using words, statistics, and figures; how to present science to a lay audience; how to write a grant proposal; and how to present orally to scientific peers.

    Credits: 2

    Prerequisite(s): None

    Fulfills an elective requirement: No

    Course Directors: Jill Zitzewitz, Daryl Bosco, and Nese Kurt Yilmaz

    Semester Offered: Fall 

    Last Taught: Fall 2024

  • Scientific Inquiry in Biomedical Research | BBS 614

    Programs: Biochemistry & Molecular Biotechnology, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    This problem-based course provides learning opportunities through exploration of multidisciplinary areas of contemporary biomedical research, and creates a forum for practice in the skills required for research.

    Credits: 6

    Prerequisite(s): Matriculation in the PhD Program

    Fulfills an elective requirement: No

    Course Directors: Jill Zitzewitz, Neal Silverman, Elizabeth Shank

    Semester Offered: Fall

    Last Taught: Fall 2024

  • Experiential PhD: Professional Development for Internship | BBS 707

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    In this professional development course, students will explore how relevant practical experiences enhance classroom learning and research, and how scholarly work enhances their practical training. This course will provide Morningside Graduate School of Biomedical Sciences students opportunities to connect theory and practice through experiential learning in a professional work environment. Students will examine, articulate, and defend their professional values and use concurrent reflection exercises to create “maps” and action steps to reach multiple long-term professional goals. We will focus on the value of continuous learning through reflective practice, mentorship, professional organizations and conferences, and leadership opportunities in the field. During this course, students will develop their professional identity and commit to lifelong learning. Students are required to take this course before going out on internship and must receive additional permissions from their advisors and TRAC approval for internship placement. This process ensures that the chosen internships align with the student's academic and career goals and confirms that they are prepared for the experience.  

    Credits: 1

    Prerequisite(s): Approval of TRAC

    Fulfills an elective requirement: No

    Course Director: Lisa Tison-Thomas

    Semester Offered: Fall, Spring, Summer

    Last Taught: New course

  • Chemical Biology | BBS 715

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway

    Chemical biology uses the power of chemistry to ask and answer questions of biological significance, typically using molecular tools designed to inhibit, activate, or report on the function of biomolecules. In this class we will cover a wide range of chemical biology topics. We will start with a basic chemistry review, then cover peptide and nucleic acid chemistry and synthesis, post-translational modification of proteins, optical imaging, chemoselective chemistry in water, and approaches to lead discovery for drug development. In the second half of the course, we will cover chemical genetics, orthogonal ligands and receptors, DNA recognition and modification, unnatural amino acids, enzyme inhibitors, rational drug design, nanoparticles, and synthetic biopolymers.

    Credits: 3

    Prerequisite(s): None

    Fulfills an elective requirement: Yes

    Course Director: Stephen Miller

    Semester Offered: Fall, odd years

    Last Taught: Fall 2023

  • Molecular Biophysics | BBS 716

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway

    The goal of this course is to give students a strong foundation in physical principles that underlie the thermodynamic and mechanistic properties of biological macromolecules and macromolecular complexes. In addition to providing theoretical background, lectures and discussion groups will focus on the application of physical chemical principles in contemporary biomedical research. Topics will include spectroscopic and computational approaches to studying protein and nucleic acid structures, thermodynamics and kinetics of protein folding, the solution behavior of macromolecules and principles that govern molecular recognition.

    Credits: 3

    Prerequisite(s): Strongly recommended, but not required: undergraduate Physical Chemistry

    Fulfills an elective requirement: Yes

    Course Director: Francesca Massi, Sy Redding

    Semester Offered: Fall, even years

    Last Taught: Fall 2024

  • Structural Biology | BBS 717

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway

    Structural Biology has revolutionized biology. The purpose of this course is to provide graduate students with a detailed introduction to approaches for structural determination of macromolecules including protein crystallography, cryo electron microscopy (CryoEM), nuclear magnetic resonance (NMR) spectroscopy and small angle X-ray scattering (SAXS). Emphasis will be placed on both structural determination and analysis of dynamics, which can be crucial for macromolecular function. Normally, each week will include a 120-minute lecture that is supplemented with paper discussion or problem sets, whose time and venue will depend upon the activity.

    Credits: 2

    Prerequisite(s): None

    Fulfills an elective requirement: Yes

    Course Directors: Brian Kelch

    Semester Offered: Spring

    Last Taught: Spring 2024

  • Regulatory RNA Biology | BBS 718

    Programs: Biochemistry & Molecular Biotechnology

    This course will cover current research in the general area of RNA biology. Topics include RNA synthesis; modification and processing pathways; RNA structure; RNA transport and subcellular localization; translational regulation; RNAi and microRNAs; RNA decay; RNA aptamers; RNA catalysts; RNA and early evolution; and RNA as a drug and/or drug target. The format of this course will center around group discussion of papers from the primary literature. Grading will be based on student attendance, performance in presentations and participation in group discussions.

    Credits: 3

    Prerequisite(s): BBS 614 or BBS 748 (non-degree students) or course equivalent

    Fulfills an elective requirement: Yes

    Course Directors: Phillip Zamore and Andrei Korostelev

    Semester Offered: Spring, even years

    Last Taught: Spring 2024

  • Cellular Biochemistry | BBS 719

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway

    Cellular Biochemistry takes an inside-out approach to teaching the molecular biological underpinnings of DNA replication, gene transcription, translation, metabolism, secretion and cell signaling.

    Credits: 3

    Prerequisite(s): None

    Fulfills an elective requirement: Yes

    Course Director: William Kobertz

    Semester Offered: Spring

    Last Taught: Spring 2024

  • Machine Learning and Applications in Genomics | BBS 741

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Systems, Computational, and Quantitative Biology

    This course covers several important areas of modern bioinformatics and computational biology. The course is aimed not only at students specializing in bioinformatics, but also general biology students who would like to utilize bioinformatics tools in their daily research. The course will begin with an overview of modern sources of bioinformatics data, especially high-throughput sequencing data (RNA-seq, ChIP-seq, DNase-seq, ATAC-seq, Whole genome bisulfite sequencing, etc.), followed by a thorough presentation of an extensive set of statistical learning and machine learning algorithms and their application to analyzing biological data. The course will include 10 lectures each with a homework set, followed by individual or group projects, presented in lieu of the final exam. 

    Credits: 2

    Prerequisite(s): Familiarity with at least one programming language (e.g. Python, MatLab, R, etc.)

    Fulfills an elective requirement: Yes

    Course Director: Zhiping Weng

    Semester Offered: Fall, Even Years

    Last Taught: Fall 2024

  • Molecular Basis of Disease | BBS 786

    Programs: Biochemistry & Molecular Biotechnology, Translational Science

    The objective of this course is to introduce Morningside Graduate School of Biomedical Sciences graduate students to approaches used to understand the molecular causes of representative diseases and application of such knowledge toward the design and implementation of rational therapies. The course is divided into five-week sections covering neurodegenerative, cardiovascular, and metabolic diseases. Interspersed among these topics will be guest speakers who will discuss specific aspects of the drug design process and novel approaches to therapy, including gene-, RNA-, and cell-based interventions. Class discussions will also help prepare students to participate effectively in team-oriented translational science. Pairs of students will each write a research proposal addressing a disease mechanism or therapy development of interest and defend the proposal during the last two weeks of class.

    Credits: 3

    Prerequisite(s): BBS 614 or BBS 748 (non-degree students) or course equivalent

    Fulfills an elective requirement: Yes

    Course Directors: Pranoti Mandrekar, Chinmay Trivedi

    Semester Offered: Spring

    Last Taught: Spring 2024

  • Research Rotation | BBS 850

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    Research rotations are defined periods of research experience under the direction of a faculty member. They are intended to familiarize the student with concepts and techniques in several areas of research and to assist the student in evaluating research laboratories and projects that might be developed into a dissertation project. The student will participate in an ongoing research project; gain familiarity with concepts underlying the research; acquire a working knowledge of techniques used in the research; and write a report and present an oral summary of the results of the research.

    In the summer term, only MD/PhD students may register.

    Credits: 2-5

    Fulfills an elective requirement: No

    Course Director: Varies

    Semester Offered: Fall, Spring, Summer

    Last Taught: Taught every Fall, Spring, and Summer

  • Summer Research - Year One | BBS 851

    Programs: Biochemistry & Molecular Biotechnology, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    Summer Research – Year 1 is for first year BBS students.  Expectations are for students to (1) formulate initial hypotheses and/or goals, (2) design and begin to execute research plans, (3) Critically read and evaluate relevant literature.

    Credits: 6

    Fulfills an elective requirement: No

    Course DirectorVaries

    Semester Offered: Summer

    Last Taught: Taught every Summer

  • BBS Qualifying Exam | BBS 860

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    Students are required to register for this course in the fall semester of the academic year in which they are to pass their Qualifying Examination.

    Credits: 1

    Fulfills an elective requirement: No

    Course Director: Mary Ellen Lane

    Semester Offered: Fall

    Last Taught: Taught every year 

  • BBS TRAC Meeting | BBS 865

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    All graduate students are required to have at least one Thesis Research Advisory Committee (TRAC) meeting each academic year. After passing their Qualifying Examination and selection of their TRAC, students are required to register for this course each fall semester until their Dissertation Advisory Committee is formed.

    MD/PhD Goals: 1) To periodically review progress along thesis research project advised by content experts 2) To provide guidance for establishing a thesis research project consistent with the MD/PhD Program goals

    MD/PhD Curricular Expectations: Two Thesis Research Advisory Committee (TRAC) meeting each academic year as define by the Professionalism Benchmark Checklist

    Credits: 1

    Fulfills an elective requirement: No

    Course Director: Mary Ellen Lane

    Semester Offered: Fall

    Last Taught: Taught every year

  • Prequalifying Research | BBS 870

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    This course is for students who have selected a program and thesis advisor but who have not yet passed the Qualifying Examination. 

    Credits: 9

    Fulfills an elective requirement: No

    Course Director: Student's thesis advisor

    Semester Offered: Fall, Spring, Summer

    Last Taught: Taught every semester

  • Thesis Research | BBS 900

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    Students register for Thesis Research fall term of year three of the program (MD/PhD Students: Fall term of year four in the program), after passing the Qualifying Exam.

    Credits: 12

    Fulfills an elective requirement: No

    Course Director: Student's thesis advisor

    Semester Offered: Fall, Spring, Summer

    Last Taught: Taught every semester

  • Graduate Research | BBS 990

    Programs: Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Systems, Computational, and Quantitative Biology, Translational Science

    Students register for Graduate Research fall term of year four (MD/PhD Students: Fall term of year five+) in the PhD Program and will continue to register each semester until they complete all remaining requirements.

    Credits: 0

    Fulfills an elective requirement: No

    Course Director: Student's thesis advisor

    Semester Offered: Fall, Spring, Summer

    Last Taught: Taught every semester

  • Responsible Conduct of Research, Part 1 | GSB 601

    Programs: Basic Biomedical Sciences Core Course, Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Population Health Sciences, Systems, Computational, and Quantitative Biology, Translational Science

    This course provides students opportunities to recognize and solve ethical problems in the responsible conduct of research. Major NIH required topics include those relevant for graduate students at this stage of training.

    Credits: 0.5

    Fulfills an elective requirement: No

    Course Director: Anthony Imbalzano and Kate Lapane

    Semester Offered: Fall

    Last Taught: Fall 2024

  • Responsible Conduct of Research, Part 2 | GSB 602

    Programs: Basic Biomedical Sciences Core Course, Biochemistry & Molecular Biotechnology, Biophysical, Chemical, and Computational Biology Pathway, Cancer Biology, Immunology & Microbiology, Interdisciplinary, Neuroscience, Population Health Sciences, Systems, Computational, and Quantitative Biology, Translational Science

    This course provides students opportunities to recognize and solve ethical problems in the responsible conduct of research. Major NIH required topics include those relevant for graduate students at this stage of training.

    Credits: 1

    Fulfills an elective requirement: No

    Course Director: Anthony Imbalzano and Kate Lapane

    Semester Offered: Fall

    Last Taught: Fall 2024

1-19  of  19  items